Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.26.22275279

ABSTRACT

Background: The limited variation observed among SARS-CoV-2 consensus sequences makes it difficult to reconstruct transmission linkages in outbreak settings. Previous studies have recovered variation within individual SARS-CoV-2 infections but have not yet measured the informativeness of within-host variation for transmission inference. Methods: We performed tiled amplicon sequencing on 307 SARS-CoV-2 samples from four prospective studies and combined sequence data with household membership data, a proxy for transmission linkage. Results: Consensus sequences from households had limited diversity (mean pairwise distance, 3.06 SNPs; range, 0-40). Most (83.1%, 255/307) samples harbored at least one intrahost single nucleotide variant (iSNV; median: 117; IQR: 17-208), when applying a liberal minor allele frequency of 0.5% and prior to filtering. A mean of 15.4% of within-host iSNVs were recovered one day later. Pairs in the same household shared significantly more iSNVs (mean: 1.20 iSNVs; 95% CI: 1.02-1.39) than did pairs in different households infected with the same viral clade (mean: 0.31 iSNVs; 95% CI: 0.28-0.34), a signal that increases with increasingly liberal thresholds. Conclusions: Although only a subset of within-host variation is consistently shared across likely transmission pairs, shared iSNVs may augment the information in consensus sequences for predicting transmission linkages.


Subject(s)
Severe Acute Respiratory Syndrome
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.20.21263527

ABSTRACT

BackgroundAn immunodiagnostic assay that sensitively detects a cell-mediated immune response to SARS-CoV-2 is needed for epidemiological investigation and for clinical assessment of T cell-mediated immune response to vaccines, particularly in the context of emerging variants that might escape antibody responses. MethodsThe performance of a whole blood interferon-gamma (IFN-{gamma}) release assay (IGRA) for the detection of SARS-CoV-2 antigen-specific CD4 and CD8 T cells was evaluated in COVID-19 convalescents tested serially up to 10 months post-infection and in healthy blood donors. SARS-CoV-2 IGRA was applied in contacts of households with index cases. Freshly collected blood in the lithium heparin tube was left unstimulated, stimulated with a SARS-CoV-2 peptide pool, and stimulated with mitogen. ResultsThe overall sensitivity and specificity of IGRA were 84.5% (153/181; 95% confidence interval [CI] 79.0-89.0) and 86.6% (123/142; 95% CI;80.0-91.2), respectively. The sensitivity declined from 100% (16/16; 95% CI 80.6-100) at 0.5-month post-infection to 79.5% (31/39; 95% CI 64.4-89.2) at 10 months post-infection (P<0.01). The IFN-{gamma} response remained relatively robust at 10 months post-infection (3.8 vs. 1.3 IU/mL, respectively). In 14 households, IGRA showed a positivity rate of 100% (12/12) and 65.2% (15/23), and IgG of 50.0% (6/12) and 43.5% (10/23) in index cases and contacts, respectively, exhibiting a difference of +50% (95% CI +25.4-+74.6) and +21.7% (95% CI, +9.23-+42.3), respectively. Either IGRA or IgG was positive in 100% (12/12) of index cases and 73.9% (17/23) of contacts. ConclusionsThe SARS-CoV-2 IGRA is a useful clinical diagnostic tool for assessing cell-mediated immune response to SARS-CoV-2. Key pointsSARS-CoV-2 immunodiagnostics are needed to identify infected individuals in order to understand the transmission dynamics of emerging variants and to assess vaccine response. Interferon-gamma release assay maintains sensitivity 10 months post-infection in convalescents and detects more household contacts than IgG.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL